3.2.73 \(\int \frac {\sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [173]

3.2.73.1 Optimal result
3.2.73.2 Mathematica [A] (verified)
3.2.73.3 Rubi [A] (verified)
3.2.73.4 Maple [A] (verified)
3.2.73.5 Fricas [A] (verification not implemented)
3.2.73.6 Sympy [F]
3.2.73.7 Maxima [B] (verification not implemented)
3.2.73.8 Giac [F(-1)]
3.2.73.9 Mupad [F(-1)]

3.2.73.1 Optimal result

Integrand size = 37, antiderivative size = 124 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {a} (8 A+3 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {a C \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d} \]

output
1/4*(8*A+3*C)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+ 
1/4*a*C*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)+1/2*C*sin(d*x 
+c)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2)/d
 
3.2.73.2 Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.79 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {2} (8 A+3 C) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 C \sqrt {\cos (c+d x)} \left (2 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{8 d} \]

input
Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d 
*x]],x]
 
output
(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*(8*A + 3*C)*ArcSin[S 
qrt[2]*Sin[(c + d*x)/2]] + 2*C*Sqrt[Cos[c + d*x]]*(2*Sin[(c + d*x)/2] + Si 
n[(3*(c + d*x))/2])))/(8*d)
 
3.2.73.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {3042, 3525, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \cos (c+d x)+a} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3525

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+C)+a C \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx}{2 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+C)+a C \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (4 A+C)+a C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {\frac {1}{2} a (8 A+3 C) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a^2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} a (8 A+3 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a^2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {\frac {a^2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {a (8 A+3 C) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\frac {a^{3/2} (8 A+3 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a^2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

input
Int[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x 
]
 
output
(C*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(2*d) + ((a^( 
3/2)*(8*A + 3*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/ 
d + (a^2*C*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/ 
(4*a)
 

3.2.73.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3525
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1 
)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + n + 2))   Int[(a + b*Sin[e + f* 
x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1 
)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] &&  !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]
 
3.2.73.4 Maple [A] (verified)

Time = 29.22 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.44

method result size
default \(\frac {\left (2 C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 C \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+8 A \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+3 C \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(178\)
parts \(\frac {2 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )}{d \sqrt {\cos \left (d x +c \right )}}+\frac {C \left (2 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(219\)

input
int((A+C*cos(d*x+c)^2)*(a+cos(d*x+c)*a)^(1/2)/cos(d*x+c)^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
1/4/d*(2*C*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*C*sin 
(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+8*A*arctan(tan(d*x+c)*(cos(d*x+c 
)/(1+cos(d*x+c)))^(1/2))+3*C*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c))) 
^(1/2)))*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)/(1+cos(d*x+c))/(cos(d*x 
+c)/(1+cos(d*x+c)))^(1/2)
 
3.2.73.5 Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.92 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\frac {{\left (2 \, C \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left ({\left (8 \, A + 3 \, C\right )} \cos \left (d x + c\right ) + 8 \, A + 3 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, al 
gorithm="fricas")
 
output
1/4*((2*C*cos(d*x + c) + 3*C)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))* 
sin(d*x + c) - ((8*A + 3*C)*cos(d*x + c) + 8*A + 3*C)*sqrt(a)*arctan(sqrt( 
a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x 
 + c) + d)
 
3.2.73.6 Sympy [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + C \cos ^{2}{\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

input
integrate((A+C*cos(d*x+c)**2)*(a+a*cos(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)
 
output
Integral(sqrt(a*(cos(c + d*x) + 1))*(A + C*cos(c + d*x)**2)/sqrt(cos(c + d 
*x)), x)
 
3.2.73.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1207 vs. \(2 (104) = 208\).

Time = 0.51 (sec) , antiderivative size = 1207, normalized size of antiderivative = 9.73 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, al 
gorithm="maxima")
 
output
1/16*(16*A*sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*co 
s(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2* 
c) + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos( 
2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
 + 1)) + cos(d*x + c)) + (2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c 
os(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) - 2)*cos(1/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c))) - cos(2*d*x + 2*c) + 2)*sin(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*sqrt(a)*(arctan2((c 
os(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(co 
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d 
*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), 
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*( 
cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)...
 
3.2.73.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)^2)*(a+a*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, al 
gorithm="giac")
 
output
Timed out
 
3.2.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2) 
,x)
 
output
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2) 
, x)